Операций дисконтирования наращения капитала

Рыночная экономика предоставляет предприятиям, осущест­вляющим производственную деятельность, возможность разме­щать свои временно свободные денежные средства на условиях срочности, платности, возвратности с целью:

1) получения процентного или дисконтного, а также курсово­го дохода;

2) сохранения денежных средств от инфляционного обесце­нения.

Основными характеристиками любого объекта инвестирова­ния являются:

1) первоначально размещаемая (исходная, номинальная) сум­ма денежных средств (PV);

2) доход в процентном выражении (процентная ставка — г или ставка дисконта — d);

3) единичный промежуток (стандартный интервал) начисле­ния дохода;

4) возвращаемая сумма (сумма погашения) (FV).

В зависимости от того, какие заданы характеристики, изме­няются направления движения денежных потоков, генерируемых инвестицией.

Классификацию процессов инвестирования по способу на­числения дохода наглядно иллюстрирует рисунок.

Процесс инвестирования, в котором заданы исходная (номи­нальная) сумма (PV) и процентная ставка (r), называется процес­сом наращения. Возвращаемая сумма (сумма погашения) называ­ется наращенной суммой (FV). Доход представляет собой разни­цу между возвращаемой и номинальной суммой. Доходность операции характеризует процентная ставка (процент).

Формула наращения имеет следующий вид:

PV + r • PV = FV;

FV = PV + r • PV;

FV = PV (1 + r).

Процесс инвестирования, в котором заданы возвращаемая сумма (сумма погашения) (FV) и дисконтная ставка (d), называ­ется процессом математического дисконтирования. При этом возвращаемая сумма (сумма погашения) (FV) равна номинальной сумме объекта вложения денежных средств, а исходная сумма (PV) — меньше номинальной. Инвестируемая сумма в данном случае называется приведенной суммой. Доходность операции ха­рактеризует дисконтная ставка (дисконт).

Формула математического дисконтирования имеет следую­щий вид:

PV = FV (1 — d).

Так как процесс дисконтирования является обратным про­цессу наращения, формула дисконтирования является резуль­татом преобразования формулы наращения:

PV + d • FV = FV;

PV = FV — d • FV;

PV = FV (1 — d).

От математического дисконтирования следует отличать так называемое банковское дисконтирование, под которым понима­ется поиск исходной суммы для наращения заданной суммы по заданной процентной ставке.

Понятие наращения и дисконтирования

Формула (банковского) дисконти­рования имеет следующий вид:

PV = FV/(1 + r).

Формула банковского дисконтирования является результатом преобразования формулы наращения:

PV + r • PV = FV;

PV (1+ r) = FV;

PV = FV/(1 + r).

Применительно к банковскому дисконтированию говорят о дис­контировании по простой или сложной ставке процентов. Взаимосвязь процентной и дисконтной ставки. Процентная ставка, характеризующая доход при наращении, и дисконтная ставка, характеризующая доход при дисконтировании, являются взаимосвязанными и взаимозависимыми. Если известна про­центная ставка, можно рассчитать дисконтную ставку, и наобо­рот.

Из формулы операции наращения (FV = PV + r • PV) следует формула определения процентной ставки:

r • РV = FV — PV;

r = (FV — PV)/PV.

Из формулы операции дисконтирования (PV = FV — d • FV) следует формула определения дисконтной ставки:

d • FV — FV — PV;

d = (FV — PV) / FV.

Процентную ставку можно выразить через дисконтную ставку. Если

r • PV = FV — PV;

PV = FV — d • FV,

то

r • (FV — d • FV) = FV — (FV — d • FV);

r • FV (1 — d) — FV — FV + d • FV;

r • FV (1 — d) = d • FV; r • (1 — d) = d.

r = d/(l-d)

Дисконтную ставку, в свою очередь, можно выразить через процентную ставку. Если

d • FV = FV — PV;

FV = PV (1 + r),

то

d • PV (1 + r) = PV (1 + r) — PV;

d • PV (1 + r) = PV + PV • r — PV;

d • PV (1 + r) = PV • r; d • (1 + r) = r.

d = r/(l+r)

Мультиплицирующие и дисконтирующие множители. Для об­легчения расчетов наращенных и дисконтированных сумм со­ставлены таблицы, соответственно, мультиплицирующих и дис­контирующих множителей.

Мультиплицирующий множитель FM1(n, r) показывает, во сколько раз увеличится сумма, вложенная на n лет под r процен­тов годовых, т.е. характеризует будущую стоимость одной денеж­ной единицы на конец периода n:

FM1(n, r) = (1 + r )n.

Дисконтирующий множитель FM2 (n, r) показывает, какую долю от наращенной суммы составит начальная сумма, вложен­ная на n лет под r процентов годовых к концу n-го года, т.е. ха­рактеризует приведенную стоимость одной денежной единицы, ожидаемой к получению через л периодов:

FM2 (n, r) = 1 / FM (n, r) = 1 / (1 + r )n = (1 + r)-n.

Величина FM (n, r) в случае дисконтирующего множителя называется приведенной (текущей, временной) стоимостью одной денежной единицы, вложенной на n лет под r процентов годо­вых. С помощью данной величины можно привести в соответст­вие вложенную и возвращаемую суммы.

Мультиплицирующий и дисконтирующий множители можно рассчитать для срочного аннуитета постнумерандо в одну денеж­ную единицу продолжительностью n периодов.

Мультиплицирующий множитель FM3(n, r) характеризует бу­дущую стоимость срочного аннуитета постнумерандо в одну де­нежную единицу продолжительностью n периодов:

Дисконтирующий множитель FM4 (n, r) характеризует приве­денную стоимость срочного аннуитета постнумерандо в одну де­нежную единицу продолжительностью n периодов:

Операции наращения и дисконтирования являются основами финансовой математики. Они применяются как в бизнесе, так и в обычной жизни, например, при оформлении депозитного вклада или потребительского кредита. Используя эти показатели, можно рассчитывать стоимость будущих денег на данный момент или сегодняшних средств в будущем. Такие операции являются основой финансового анализа инвестиционных инициатив.

Сущность способов оценки стоимости финансов

Большинство из нас сталкивалось с понятием банковского процента при размещении денег на депозитном счету и просчитывало, какой пассивный доход удастся получить, благодаря удачному вложению. Дисконтированием в быту пользуются гораздо реже, его основная сфера применения – бизнес. Операции наращивания и дисконтирования, по сути, схожи между собой, но имеют разную направленность во времени:

  • наращение направлено в будущее и показывает цену сегодняшним деньгам через определенное время;
  • дисконтирование имеет обратный вектор и характеризует цену ожидаемых прибылей по состоянию на сегодняшний день с учетом дисконта.

Основным элементом, отражающим временной фактор, выступает процентная ставка. Ее можно понимать как цену за использование денег, взятых взаймы.

Ставка в финансовом менеджменте применяется как норма доходности проводимых операций. Она исчисляется в процентах или долях единицы в результате деления полученного дохода на объем инвестированных средств.

Проценты бывают двух видов:

  • Декурсивные (обычные). Они выплачиваются в конце установленного договором периода. Применяются при страховании, а также оформлении депозитов и кредитов.
  • Антисипативные (авансовые). Они начисляются на начальной стадии установленного временного отрезка относительно количества денег, которое ожидается в конце (с учетом процентов), и выплачиваются получателем сразу при оформлении кредита. Используются в расчетах с иностранными контрагентами, а также при работе с ценными бумагами дисконтированными.

Рыночная экономика дает возможность частным инвесторам, инвестиционным компаниям или предприятиям разместить свободные деньги на условиях возвратности, платности и срочности, преследуя такие цели:

  • гарантирование сохранности своих финансовых ресурсов от обесценивания, вызванного инфляционными процессами;
  • получение дополнительного дохода (курсового, дисконтного или процентного).

Если известны начальная и конечная сумма, а также период вложения, то по формулам можно рассчитать значения дисконтной и процентной ставок. Например, известно, что предприниматель взял трехлетний кредит на 300 тысяч рублей, а в конце должен возвратить банку 400 тысяч рублей:

r = (FV — PV) / PV * n = (400 — 300) / 300 * 3 = 100 / 900 = 0,11, то есть 11%.

d = (FV — PV) / FV * n = (400 — 300) / 400 * 3 = 100 / 1200 = 0,08, то есть 8%.

Всегда существуют предприниматели или компании, которые нуждаются в деньгах для развития своего бизнеса, они готовы платить за предоставленную им ссуду. С другой стороны, имеются учреждения или организации, готовые за плату предоставить необходимый ресурс. Важно только понимать, на какое время, и на каких условиях можно брать деньги в долг, чтобы остаться в выигрыше. Именно для прогнозирования процессов такого роды и применяются методы наращения и дисконтирования.

Метод наращивания капитала

Наращивание (компаундирование) представляет собой увеличение начальной суммы (PV, Present Value) капитала за счет прибавления к ней через определенное время процентов как следствие какой-то финансовой операции. После этого можно увидеть итоговую сумму (FV, Future Value).

Определяют две разновидности процентов:

  • Простые, когда начисление вознаграждения производится один раз в конце срока вклада. Обычно они применяются в краткосрочных операциях (длительностью до одного года), по окончании срока которых нужно снимать всю сумму вместе с пассивным доходом, а при необходимости снова вкладывать ее и оформлять все заново.
  • Сложные, когда при расчете выгоды от каждого временного отрезка, учитываются уже начисленные на начальную сумму проценты за предыдущий временной отрезок. Такая методика характерна для долгосрочных вкладов.

Формула простых процентов имеет такой вид:

FV = PV * (1 + r*n)

где:

  • r – процентная ставка;
  • n – количество периодов времени.

Просчитаем наращение по простым процентам при вкладе 20 тысяч рублей сроком на 1 год по ставке 7% годовых:

FV = 20000 * (1 + 0,07 * 1) = 21400

Таким образом, сумма начисленных процентов за год составит 1400 рублей. Если на тех же условиях положить деньги на 3 года, то получим такой результат:

FV = 20000 * (1 + 0,07 * 3) = 24200 рублей.

Теперь рассмотрим вариант, при котором те же деньги вкладывают на 3 года под аналогичный процент с начислением вознаграждения ежегодно. Здесь можно применить формулу сложных процентов:

FVn = PV (1 + r)n

Для начала необходимо рассчитать ожидаемое наращение вклада к концу первого года, а после этого и оставшихся двух лет:

FV1 = FV1 + FV1 * r =PV (1 + r) = 20000 (1 + 0,07) = 21400;

FV2 = FV2 + FV2 * r = PV (1 + r)2 = 20000 (1 + 0,07)2 = 22898;

FV3 = FV3 + FV3 * r = PV (1 + r)3 = 20000 (1 + 0,07)3 = 24500

Из наших вычислений можно увидеть, что наращение с применением сложных процентов за 3 года составит 4501 рубль. Вспомним, что если бы речь шла о простых процентах, то вкладчик получил бы несколько меньшую сумму. Разница составляет 300 рублей (24500 — 24200). На первый взгляд, это совсем немного, однако когда речь идет о крупных вкладах это различие становится существенным.

Если же по условиям договора начисление процентов производится чаще, чем раз в году (ежеквартально или ежемесячно), то наращивание первоначальной суммы идет более высокими темпами. Чем чаще период начисления, тем быстрее растет вложенный капитал.

Метод дисконтирования капитала

Понятие дисконтирования является важнейшим элементом оценки и анализа денежных потоков, возникающих в результате инвестирования финансов в любые начинания. Использование дисконтирования при совершении сделок и заключении договоров дает возможность собственникам избежать убытков и заработать на своих вложениях.

Дисконтирование – это механизм приведения будущей стоимости средств к состоянию на момент расчета. Он дает возможность, зная размер конечной суммы FV, найти величину суммы PV, которую следует вложить. Примерами дисконтирования могут служить такие случаи:

  • При оформлении депозита клиент хочет знать, сколько ему необходимо денег положить на счет, чтобы через 3 года у него было 400 тысяч рублей.
  • При получении ссуды клиент сразу должен выплатить проценты за ее использование, такая сделка носит название учет, а проценты в таком случае называют дисконтом.
  • При покупке векселя раньше наступления времени его оплаты (учет векселя). В этом случае банк выплачивает держателю сумму, которая меньше номинала, а разница между номиналом и реально полученной суммой называется дисконтом.

Поскольку дисконтирование и наращение, по сути, являются зеркальным отражением друг друга, то формула дисконтирования легко находится путем преобразования формулы наращивания:

PV = FV * 1/(1 + r)n

Ставка дисконтирования (d) и процентная ставка (r) взаимосвязаны между собой соотношениями, которые можно выразить таким образом:

d = r * (PV / FV) – определяется относительно начальной суммы

r = d * (FV / PV) – определяется относительно наращенного денежного показателя.

Решим несложную задачу. Человек желает купить новую модель автомобиля, которая выйдет на рынок через 3 года. Заявленная производителем ориентировочная стоимость автомобиля составляет 22 тысячи долларов. Необходимо найти, сколько денег требуется положить на депозит сейчас при ставке 7% годовых, чтобы через три года выйти на искомый показатель. Подставляем исходные данные в формулу дисконтирования:

PV = 22000 * 1 / (1 + 0,07)3 = 22000 * 1 / 1,225 = 22000 * 0,8163 = 17959

Для выхода на показатель 22000 долларов, сегодня под 7% годовых следует вложить 17959 долларов.

В нашем случае все достаточно очевидно, поскольку размер процентной ставки известен заранее.

Процессы наращения и дисконтирования

Гораздо сложнее определить значение этого критерия в случае оценки инвестиционного предложения. В этом случае ставка определяется различными методами, в которых используются такие показатели, как средний банковский процент, величина активов компании, размер и рентабельность капитала, размер дивидендов по ценным бумагам, потенциальные риски. Кроме того, учитывается темп инфляции и общеэкономические ожидания.

Тема 1. ЛОГИКА ФИНАНСОВЫХ РАСЧЕТОВ

Фактор времени в рыночной экономике

В условиях рыночной экономики при проведении долгосрочных финансовых операций важную роль играет фактор времени. «Золотое» правило бизнеса гласит: «Денежная сумма, полученная сегодня, больше той же суммы, полученной завтра». Поэтому в финансовых расчетах фактор времени играет не меньшую роль, чем размеры денежных сумм. Действительно, всегда найдутся организации и частные лица (заемщики), нуждающиеся в кредитах на тот или иной период и готовые платить за такой заем (ссуду). Таким образом, в большинстве случаев увеличение стоимости капитала происходит в результате предоставления его в долг и взимания процентной ставки.

Фактор времени в финансовой сфере учитывается с помощью процентной ставки. В узком смысле процентная ставка представляет собой цену, уплачиваемую за использование заемных денежных средств.

Дисконтирование

Однако в финансовом менеджменте ее также часто используют в качестве измерителя уровня (нормы) доходности производимых операций, исчисляемого как отношение полученной прибыли к величине вложенных средств и выражаемого в долях единицы (десятичной дробью) или в процентах.

Виды процентов

Методы финансово-экономических расчетов различны в зависимости от вида применяемых процентов. Относительно момента выплаты или начисления дохода за пользование предоставленными денежными средствами проценты подразделяются на обычные (декурсивные) и авансовые (антисипативные).

Отрезок времени между двумя следующими друг за другом процедурами начисления процентов или срок финансовой операции, если проценты начисляются один раз, называется периодом начисления процентов.

Обычные проценты начисляются в конце периода относительно исходной величины средств. Доход, определяемый обычным процентом, выплачивается в конце периодов финансовой операции. Такие проценты применяют в большинстве депозитных и кредитных операций, а также в страховании.

Авансовые (антисипативные) проценты начисляются в начале периода относительно конечной суммы денег. Доход, определяемый авансовым процентом, выплачивается в момент предоставления кредита. Такая форма расчетов называется авансовой или учетом. При этом базой расчета процентов служит сумма денег с процентами (сумма погашения долга). Исчисленные таким образом проценты взимаются вперед и являются авансом. Так рассчитывают проценты в некоторых видах кредитования, операциях с дисконтными ценными бумагами, в международных расчетах.

Рассмотренным двум видам процентов на практике соответствуют определенные процентные ставки. Это, во-первых, обычная ставка процентов — rote of interest ( ) которая рассчитывается как отношение дохода, полученного за определенный период времени к величине капитала, предоставляемого в кредит. Во-вторых, учетная (антисипативная) ставка — discount rote ( ). Учетная ставка рассчитывается, как отношение дохода, полученного за определенный период времени к ожидаемой сумме погашения долга.

Простейшим видом финансовой операции является однократное предоставление в долг некоторой суммы с условием, что через n лет будет возвращена большая сумма . В этом случае обычная годовая ставка процентов рассчитывается по формуле (1), а учетная ставка — по формуле (2):

(1.1)

(1.2)

В экономической литературе первый показатель также называют «процентная ставка», «процент», «рост», «ставка процента», «норма прибыли», «доходность», а второй — «учетная ставка», «дисконт». Обе ставки взаимосвязаны, т.е. зная один из показателей, можно рассчитать другой по формулам (3) и (4) соответственно:

(1.3)

(1.4)

В зависимости от условий проведения финансовых операций, начисление процентов может осуществляться с применением простых, либо сложных процентов.

Простые проценты, как правило, используются в краткосрочных финансовых операциях, срок проведения которых меньше года. Базой для исчисления процентов за каждый период в этом случае служит первоначальная (исходная) сумма сделки.

Сложные проценты широко применяются в долгосрочных финансовых операциях со сроком проведения более одного года. Однако могут быть использованы и в краткосрочных финансовых операциях, если это предусмотрено условиями сделки. При этом база для начисления процентов меняется за счет присоединения ранее начисленных процентов, т.е. она включает в себя как исходную сумму сделки, так и сумму уже накопленных к этому времени процентов.

Практика расчетов процентов основывается на теории наращения денежных средств по арифметической или геометрической прогрессии. Арифметическая прогрессия соответствуют простым процентам, геометрическая — сложным.

Пример.Предприниматель получил на два года кредит в размере 100 тыс. руб. В конце срока он должен возвратить 140 тыс. руб. Определите годовые процентную и учетную ставки.

Решение:

Наращение и дисконтирование

Процесс, в котором по заданной исходной сумме и процентной ставке необходимо найти ожидаемую в будущем к получению сумму, в финансовых вычислениях называется процессом наращения. Процесс, в котором по заданной ожидаемой в будущем к получению сумме и процентной ставке необходимо найти исходную сумму долга называется процессом дисконтирования. Логика финансовых операций схематически изображена на рис. 1.

Рис. 1. Логическая схема операций наращения и дисконтирования.

Экономический смысл метода наращения состоит в определении величины, которая будет или может быть получена из некоторой первоначальной (текущей) суммы в результате проведения операции. Другими словами, метод наращения позволяет определить будущую величину (future value — ) текущей суммы (present value — ) через некоторый промежуток времени, исходя из заданной процентной ставки.

Дисконтирование представляет собой процесс нахождения современной на заданный момент времени суммы по ее известному или предполагаемому значению в будущем, исходя из заданной процентной ставки.

В экономическом смысле величина , найденная в процессе дисконтирования, показывает современное (с позиции текущего момента времени) значение будущей величины . Таким образом – дисконтирование – это по сути дела зеркальное отражение наращения. Используемую при этом процентную ставку называют нормой дисконта.

12345678910Следующая ⇒

Дата публикования: 2015-11-01; Прочитано: 1740 | Нарушение авторского права страницы

Финансы и кредит / Финансовые вычисления / 1.2 Операции наращения и дисконтирования

Простейшим примером финансовой сделки является однократное предоставление в долг некоторой суммы (PV) с условием, что через какое-то время (t) будет возвращена большая сумма (FV).

При этом FV называется будущей стоимостью, а PV – настоящей стоимостью.

Будущая стоимость денегденег (FV) – это сумма инвестированных в настоящий момент денежных средств, в которую они превратятся через определенный период времени с учетом определенной ставки процента.

Настоящая стоимость денег (PV) – это сумма будущих денежных средств, приведенных с учетом определенной ставки процента (процентной ставки) к настоящему периоду времени.

Результативность приведенной сделки может быть охарактеризована:

  • или с помощью абсолютного показателя (FV – PV), но как было уже сказано, абсолютные показатели не подходят для подобной оценки ввиду их несопоставимости во временном аспекте;
  • или расчетом относительного показателя, специального коэффициента – ставки.

Ставка рассчитывается как отношение приращения исходной суммы к базовой величине, в качестве которой можно брать либо PV, либо FV. Таким образом, ставка рассчитывается по одной из двух формул:

  • темп прироста

; (1.1)

  • темп снижения

. (1.2)

В финансовых вычислениях первый показатель имеет еще названия «процентная ставка», «процент», «ставка процента», «норма прибыли», «доходность», а второй – «учетная ставка», «дисконт».

Обе ставки взаимосвязаны, т.е. зная одну ставку, можно рассчитать другую:

или .

Оба показателя могут выражаться либо в долях единицы, либо в процентах. Различие в формулах состоит в том, какая величина берется за базу сравнения:

  • в формуле процентной ставки (1.1) за базу сравнения берется исходная сумма;
  • в формуле учетной ставки (1.2) – возвращаемая сумма.

Очевидно, что , а степень расхождения зависит от уровня процентных ставок на конкретный момент времени. Например:

  • если it = 8 %, то dt = 7,4 %, т.е.

расхождение сравнительно невелико;

  • если it = 80 %, то dt = 44,4 %, т.е. ставки существенно различаются по величине.

Как мы видим, при разумных значениях ставок расхождения между процентной и дисконтной ставками относительно невелики и потому в прогнозных расчетах, например, при оценке инвестиционных проектов может быть использована любая из них.

Итак, в любой простейшей сделке всегда присутствуют три величины, две из которых заданы, а одна является искомой.

Процесс, в котором заданы исходная сумма и процентная ставка называется процессом наращения, а процесс, в котором заданы ожидаемая в будущем к получению (возвращаемая) сумма и коэффициент дисконтирования, называется процессом дисконтирования. В первом случае речь идет о движении денежного потока от настоящего к будущему, во втором – о движении денежного потока от будущего к настоящему (рисунок 1.1).

В качестве коэффициента дисконтирования может использоваться либо процентная ставка (математическое дисконтирование), либо учетная ставка (банковское дисконтирование).

Экономический смысл операции наращения (формула 1.1.) состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции. Поскольку из формулы (1.1) получается:

и

,

то видно, что время генерирует деньги. Величина FV показывает будущую стоимость «сегодняшней» величины PV при заданном уровне доходности.

На практике доходность является величиной непостоянной, зависящей, главным образом, от степени риска, ассоциированного с данным видом бизнеса. Связь здесь прямо пропорциональная: чем рискованнее бизнес, тем выше значение доходности.

Экономический смысл дисконтирования заключается во временном упорядочении денежных потоков различных временных периодов. Коэффициент дисконтирования показывает, какой ежегодный процент возврата хочет (или может) иметь инвестор на инвестируемый им капитал. В этом случае искомая величина PV показывает как бы текущую, сегодняшнюю стоимость будущей величины FV. Например, предприятие получило кредит на один год в размере 5 млн. руб.

Наращивание и дисконтирование

с условием возврата 10 млн. руб. в этом случае процентная ставка равна 100 %, а дисконт – 50 %.

admin